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Dedicated to Rolf Hagedorn, 1919–2003

Abstract. We review the resonance gas formalism of hadron thermodynamics and recall that an exponential
increase of the resonance spectrum leads to a limiting temperature of hadronic matter. We then show that
the number p(n) of ordered partitions of an integer n grows exponentially with n and satisfies the integer
counterpart of the statistical bootstrap equation. Considering the set of all partitions as a Gibbs ensemble
provides a partition thermodynamics which is also governed by a limiting temperature, determined by the
combinatorial structure of the problem. Further associating intrinsic quantum numbers to integers results
in a phase diagram equivalent to that found in QCD for hadronic matter as a function of temperature and
baryochemical potential.

1 Introduction

The most important observation in particle physics around
1960 was that the number of different species of so-called el-
ementary particles seemed to grow without limit. Hadron–
hadron collisions producedmore andmore resonanthadron-
ic states of increasing masses. This phenomenon triggered
two different theoretical approaches.

The more conventional idea, classical reductionism as
pursued in atomism since antiquity, proposed that there
must be a smaller number of more elementary objects,
which then bind to form the observed hadrons as compos-
ite states. This approach, as we know, ultimately led to
quantum chromodynamics as the fundamental theory of
strong interactions and thus once more proved most suc-
cessful.

A second, truly novel approach asked what such an
increase of states would lead to in the thermodynamics
of strongly interacting matter [1]. Both the question and
the answer: the existence of an ultimate temperature of
hadronic matter, are the contribution of Rolf Hagedorn.
We know today that strong interaction thermodynamics
leads to critical behavior, to a phase transition in which
hadronic matter turns into a plasma of deconfined quarks
and gluons. Statistical QCD has confirmed this and led to
a detailed picture of this novel phenomenon. Let us see
how it comes about and what is its hadronic basis.

2 Hadron thermodynamics

Consider an ideal gas of identical neutral scalar particles of
mass m0 contained in a box of volume V , assuming Boltz-

mann statistics. The grand canonical partition function of
this system is given by

Z(T, V ) (1)

=
∑
N

1
N !

[
V

(2π)3

∫
d3p exp

{
−

√
p2 + m2

0 /T

}]N

,

leading to

lnZ(T, V ) =
V Tm2

0

2π2 K2

(m0

T

)
. (2)

For temperatures T � m0, the energy density of the
system becomes

ε(T ) = − 1
V

∂ ln Z(T, V )
∂ (1/T )

� 3
π2 T 4, (3)

the particle density

n(T ) =
∂ ln Z(T, V )

∂ V
� 1

π2 T 3, (4)

and the average energy per particle

ω � 3 T. (5)

Hence an increase of energy of the system has three
consequences: it leads to
(1) a higher temperature,
(2) more constituents, and
(3) more energetic constituents.
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If we now consider an interacting gas of basic hadrons
and introduce resonance formation as the fundamental fea-
ture of their dynamics, we can approximate the interacting
medium as an ideal gas of the possible resonance species [2].
The partition function of this resonance gas is

lnZ(T, V ) =
∑

i

V Tm2
i

2π2 ρ(mi) K2

(mi

T

)
, (6)

where the sum begins with the stable ground state m0 and
then includes the possible resonances mi, i = 1, 2, . . . with
weights ρ(mi) relative to m0. Clearly the crucial question
here is how to specify ρ(mi), how many states there are of
mass mi. It is only at this point that hadron dynamics en-
ters.

The simplest answer is that ρ(m) is obtained just from
combinatorics, and it immediately gives us Hagedorn’s sta-
tistical bootstrap model. Hagedorn assumed that “fireballs
consist of fireballs, which consist of fireballs. . . ”. In a more
modern form, one would assume that resonance formation
and decay follow a self-similar pattern. In any case, the
defining equation for ρ(m) is

ρ(m, V0) = δ(m − m0)

+
∑
N

1
N !

[
V0

(2π)3

]N−1

×
∫ N∏

i=1

[dmi ρ(mi) d3pi] δ4(Σipi − p). (7)

It was solved analytically by Nahm [3], giving

ρ(m, V0) = const. m−3 exp{m/TH}. (8)

The density of states thus increases exponentially in m,
with a coefficient T−1

H determined by

V0T
3
H

2π2 (m0/TH)2K2(m0/TH) = 2 ln 2 − 1, (9)

in terms of the two parameters V0 and m0. Hagedorn as-
sumed that the composition volume V0, specifying the in-
trinsic range of the strong interactions, is determined by
the inverse pion mass as scale, V0 � (4π/3)m−3

π . This leads
to a temperature TH � 150 MeV. It should be emphasized,
however, that this is just one possible way to proceed. In
the limit m0 → 0, (9) gives

TH = [π2(2 ln 2 − 1)]1/3 V
−1/3
0 � 1/rh, (10)

where V0 = (4π/3)r3
h, and rh denotes the range of strong

interactions. With rh � 1 fm, we thus have TH � 200 MeV.
From this it is evident that the Hagedorn temperature
persists in the chiral limit and is in fact only weakly de-
pendent on mπ, provided the strong interaction scale V0 is
kept fixed.

If we now replace the sum in the resonance gas partition
function (6) by an integral and insert the exponentially
growing mass spectrum (8),

lnZ(T, V ) � V T

2π2

∫
dm m2ρ(mi) K2

(mi

T

)
(11)

∼ V

[
T

2π

]3/2 ∫
dm m−3/2 exp

{
−m

[
1
T

− 1
TH

]}
,

we obtain a divergence for all T > TH: in other words, TH is
the ultimate temperature of hadronic matter. In contrast
to what we found above, an increase of energy now leads
to
(1) a fixed temperature limit, T → TH,
(2) the momenta of the constituents do not continue to
increase, and
(3) more and more species of ever heavier particles appear.

We thus obtain a new, non-kinetic way to use energy, in-
creasing the number of species, not the momentum per par-
ticle.

Hagedorn originally interpreted TH as the highest possi-
ble temperature of strongly interacting matter. Somewhat
later Cabibbo and Parisi [4] pointed out that the reso-
nance gas partition function (11) in fact does not diverge
at T = TH, while its higher derivatives do. Such a behavior
occurs at phase transition points, and so TH is “only” a crit-
ical temperature of strongly interacting matter. It is clear
now that TH indeed defines the transition from hadronic
matter to a quark–gluon plasma. Hadron physics alone can
only specify its inherent limit; to go beyond this limit, we
need QCD.

The crucial feature leading to the observed limit of
hadron physics at TH is the exponential increase in the
number of hadronic states. In the following section, we want
to study the origin of such an increase and look somewhat
closer at the nature of TH.

3 Partition thermodynamics

To arrive at the simplest possible problem leading to an
exponentially increasing number of “states”, we consider
the number p(n) of ordered partitions of an integer n into
integers. To illustrate: for n = 3, we have the ordered
partitions 3, 2+1, 1+2, 1+1+1, so that

p(n = 3) = 4 = 2n−1. (12)

Similarly, n = 4 gives the partitions 4, 3+1, 2+2, 2+1+1,
1+3, 1+2+1, 1+1+2, 1+1+1+1, leading to

p(n = 4) = 8 = 2n−1. (13)

This solution can be shown to hold in fact for all n (see
the appendix), i.e.,

p(n) = 2n−1 =
1
2

exp{n ln 2}. (14)

We note here for completeness that calculating the num-
ber q(n) of unordered partitions of an integer n (i.e., not
counting permutations) is more difficult and solved only
asymptotically [5]:

q(n) =
1

4
√

3 n
e
{

π
√

2n/3
} [

1 + O

(
log n

n1/4

)]
. (15)
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We will not make use of this result here.
The problem of ordered partitions can also be solved

for restricted or extended cases. For example, if we allow
only odd integers in the partitions, we get for large n

p(n) � κ√
5

en ln κ, (16)

with κ = (1 +
√

5)/2 � 1.62 < 2. On the other hand, if
we introduce further degrees of freedom, e.g., giving each
integer an intrinsic quantum number (“spin”) which can
take on the values ±1, the exact solution is

p(n) = 2κn−1 =
2
κ

e{n ln κ}, (17)

now with κ = 3 > 2. Hence we have as solution to the
generalized ordered partition problem the form (see the
appendix)

p(n) ∝ κn = e{n ln κ}, (18)

with κ = 2 for the “standard” case and in general ∞ >
κ > 1.

We thus obtain an exponential increase in the number
of possible partitions. How is this related to the statisti-
cal bootstrap condition (7)? Consider a density of states
defined by a bootstrap equation for integers,

ρ(n) = δ(n − 1) +
n∑

k=2

1
k!

k∏
i=1

ρ(ni) δ(Σini−n). (19)

Its solution is just the number of partitions of n,

ρ(n) = z p(n) (20)

up to a normalization of order unity (for the standard case
κ = 2, z � 1.25). We can thus conclude
(1) the statistical bootstrap equation is an integral formu-
lation of a partition problem;
(2) the exponential increase in the number of states is of
combinatoric origin, and
(3) the exponential coefficient κ is determined by the com-
binatoric structure.

Let us therefore consider κ in more detail. In the stan-
dard case, see (14), the exponential increase in the number
of partitions is determined by ln 2; in (9), we have seen that
in the actual statistical bootstrap, TH is also determined
by ln 2, but in a somewhat more complex way due to the
presence of momentum degrees of freedom in addition to
the hadron masses.

To understand the meaning of κ in a thermal context,
we construct a statistical mechanics of partitions, consid-
ering each partition as a point in the “phase space” of all
partitions of fixed n. The set of all partitions thus forms a
Gibbs ensemble, and we define the partition entropy as

S(n) = ln p(n) � n lnκ, (21)

the specific partition entropy as

s(n) =
S(n)

n
� lnκ, (22)
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Fig. 1. Specific partition entropy as function of x = σT/n

and the partition temperature Θ as

1
Θ

=
dS(n)

dn
= lnκ. (23)

The parameter ln κ determining the increase of the number
of partitions of n is thus the partition temperature Θ, which
here for large n coincides with the inverse of the specific
partition entropy.

Next we turn to the mentioned generalized form, in
which each integer ni has an intrinsic “spin” variable σi =
±1, in order to see what the effect of conserved quantum
numbers is. We define the total spin for a given partition
of n as

σT(n) =
∑

i

σi, (24)

where the sum runs over all k ≤ n terms of the partitions.
We now calculate the number p(n, σT) of partitions of n
at fixed σT. For σT = n we have p(n, n) = 1, since only
the partition n = 1 + 1 + . . . + 1 of all spins +1 can give a
total spin equal to n. For σT = 0 we find p(n, 0) � 3n−1,
since total spin zero constitutes the dominant part of all
configurations. The specific partition entropy s(n, σT) is
shown in Fig. 1. It was calculated numerically for values of n
up to 20000 (see the appendix) and it was found to depend
only on x = σT/n. Moreover, our calculations show no
appreciable difference between n = 10000 and n = 20000,
so that the latter is in good approximation the asymptotic
form of the curve. It can be fitted by

s(x) = [1 − xa]b ln 3, (25)

with a = 2.1, b = 0.736, and is shown in Fig. 1, varying
from s(0) = ln 3 to s(1) = 0.

The partition temperature now becomes

1
Θ(x)

=
dS(n, σT)

dn
=

d[n s(x)]
dn

= s(x) − x
ds(x)
d x

(26)

and is thus no longer equivalent to the inverse specific
partition entropy: for x → 1, both s(x) and Θ(x) vanish.
Through (26) we can determine Θ(x) from the function s(x)
(see (25)) that we have previously calculated. The resulting
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Fig. 2. Partition temperature as a function of x = σT/n

form is shown in Fig. 2; it decreases from Θ = 1/ ln 3 at
x = 0 to 0 at x = 1.

The constituents of our partition thermodynamics are
the different integers occurring in the partitions; they are
the resonances of the resonance gas. It is thus interesting to
ask for the relative abundance Rn,σT(a, b) of two integers
a, b < n in the set of all partitions of n. In the appendix,
we calculate the total occurrence h(n, a, σT) of an integer
a in the partitions of n at fixed σT. Given this, the desired
relative abundance is defined as

Rn,σT(a, b) =
h(n, a, σT)
h(n, b, σT)

. (27)

For a, b 	 n it turns out that for large n, Rn,σT(a, b)
depends only on the ratio σT/n and has the form

Rn,σT(a, b) � e−(a−b)/Θ(σT/n), (28)

where Θ is precisely the partition temperature shown in
Fig. 2. We thus see that the resonance gas feature of species
abundances specified by one universal temperature in fact
has its origin in the underlying combinatoric structure.

So far, we have considered partition thermodynamics in
what might be called a grand microcanonical formulation:
the number of terms in the different partitions varies, but
their sum n and the overall spin σT are specified exactly. To
go to a grand canonical formulation, we fix n and σT only
on the average. The starting point is the grand canonical
partition function

Z(T, µ) (29)

=
∫ ∞

1
dn exp{−n/T}

∫ n

−n

dσT exp{−µσT/T} p(n, σT),

with the temperature T and the chemical potential µ the
Lagrangian multipliers for n and σT. Since p(n, σT) =
exp{ns(σT/n)}, where s(σT/n) is the specific entropy cal-
culated above, we get

Z(T, µ) (30)

=
∫ ∞

1
dn

∫ n

−n

dσT exp
{

−n

[
1
T

− µ

T

σT

n
− s(σT/n)

]}
.
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Fig. 3. Phase boundary for partition thermodynamics

The integral (30) is not defined for all pairs of values (T, µ):
for fixed µ, it exists only for those values of the temperature
for which

1
T

− µ

T

σT

n
− s(σT/n) > 0 ⇒ T <

1 − µx

s(x)
∀ σT, n.

(31)
We note that the function on the right of the last inequality
depends only on the variable x = σT/n, and not on σT and
n separately. Since the condition (31) must be valid for any
possible value of the ratio σT/n, with |σT/n| ≤ 1, T has
to be smaller than the absolute minimum of the function

f(x, µ) =
1 − µ x

s(x)
, (32)

in the interval −1 ≤ x ≤ 1. Hence for any µ there exists
a limiting value Tc(µ) of the temperature beyond which
the grand canonical partition function is not defined. In
particular, for µ = 0, we get Tc = 1/ ln 3, which is the
temperature determined in the previous section for the
partition problem with total spin σT = 0. We further note
that |µ| ≤ 1, because otherwise the function f(x, µ) would
become negative for some x and the inequality (31) could
never be satisfied by positive values of the temperature T .
By varying µ we obtain a curve in the T–µ plane, which
defines the existence region for our system. Determining
numerically the minimum of the f(x, µ) as a function of
µ, we obtain the form shown in Fig. 3.

The resulting “phase diagram” of partition thermody-
namics, i.e., the boundary for the existence of such thermo-
dynamic systems, is evidently very similar to that expected
in statistical QCD for the phase boundary of hadronic mat-
ter. It thus seems that quantum chromodynamics leads to
a resonance pattern which is basically of a combinatoric
nature. Moreover, the conservation of baryon number also
appears to follow a simple combinatoric form resulting from
the addition of the baryonic degrees in the resonance com-
position.

4 Conclusions

We have shown that the limit of hadron physics obtained
in resonance gas thermodynamics with an exponentially
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increasing mass spectrum is due to the combinatorics of
resonance formation. In particular, the simplest partition
systems provide
(1) a limiting temperature determined solely by the com-
binatoric structure of the system;
(2) a reduction of this limiting temperature for conserved
intrinsic quantum numbers and hence a phase boundary
for partition thermodynamics;
(3) a relative abundance of constituents governed by the
limiting temperature.

Hence, if all combinations of n hadrons are resonances
and the degeneracy of each resonance is determined by the
number of compositionpatterns, an energy input eventually
goes into species formation, not into faster constituents.
Comparing such a resonance gas to a conventional pion
gas, we thus find for the dependence on energy density ε
for a pion gas nπ ∼ ε3/4 and ωπ ∼ ε1/4, and for a resonance
gas nres ∼ ε and ωres ∼ const.

Herendenotes the density of constituents,ω the average
energy of a constituent.

We close with a rather speculative question, concerning
the relation of our considerations to nuclear collisions. In
the experimental study of such interactions, it is found that
the relative abundances of hadron species are essentially
determined by two parameters, the temperature T of a
resonance gas and the baryochemical potential µ specifying
its overall baryon density [6]. For high energy collisions at
µ = 0, T � 175 MeV; with increasing µ, T (µ) decreases in
a form quite similar to that shown in Fig. 3. What can we
learn from this? There seem to be two possible scenarios.
(1) Each collision produces a thermal system and thus
corresponds to an ensemble of many partitions: nuclear
collisions produce matter.
(2) Each collision is one partition, and only the ensemble
over many collisions forms a thermal ensemble: nuclear
collisions simulate matter.

Which of these two is realized in nature appears to be
one of the most crucial questions for the experimental high
energy heavy ion program.
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A Standard case

To determine the number of ordered partitions of an in-
teger n into integers ki ≤ n, we start from the number of
partitions containing m terms. This is equivalent to the
number of divisions of a segment of length n units into m
parts. Each partition of this type is constructed by choos-
ing m − 1 of the first n − 1 integers as end points for the
m segments dividing [0, n]. This can be done in

p(n, m) =
(

n − 1
m − 1

)
(33)

possible ways. By summing over all possible values of m,
we obtain

p(n) =
n∑

m=1

p(n, m) =
n∑

m=1

(
n − 1
m − 1

)
= 2n−1. (34)

Next, we determine the abundance of a given integer a
in the set of all partitions. Suppose we have a partition of
m terms with at least one occurrence of the number a < n.
By changing the position of a within the partition, we get
m possible partitions containing the same number of terms,
with order of the m− 1 other terms unchanged. Hence the
number of occurrences of a in partitions with m summands
is just m times the number of partitions of n−a into m−1
terms. Among the partitions of n−a into m−1 terms there
will in general be other a’s, and in this case each partition
gives a contribution larger than one to the occurrence of a.
However, this larger contribution is exactly compensated
by a reduction of the number of corresponding partitions,
since the different a are indistinguishable and can be freely
permuted without generating new partitions. To get the
total occurrence h(n, a) of a in all partitions of n we sum
over all possible values of m and obtain

h(n, a) =
n−a+1∑
m=2

m

(
n − a − 1

m − 2

)
. (35)

Defining l = m − 2, we get

h(n, a) =
n−a−1∑

l=0

(l + 2)
(

n − a − 1
l

)

= 2
n−a−1∑

l=0

(
n − a − 1

l

)
+

n−a−1∑
l=0

l

(
n − a − 1

l

)
, (36)

and from this

h(n, a) = (n − a − 1) 2n−a−2 + 2n−a =
n − a + 3

4
2n−a

(37)
for the abundance of a in the partitions of n.

B Intrinsic degrees of freedom

We now assume that each integer carries an intrinsic degree
of freedom, an integer “spin” σ, giving it 2σ degenerate
states; in the example above, we had σ = 1 and hence
the two states ± 1. It is obvious that such a spin leads
to an increase in the number of partitions; each partition
is now labeled by n and by the total spin σT =

∑
k σk

of its summands. If we do not impose any constraint on
the total spin, it is trivial to calculate the total number of
partitions. There are now 2σ copies of each number, so that
in a partition with m terms, each summand contributes an
additional factor 2σ. Equations (33) thus becomes

pσ(n, m) = (2σ)m

(
n − 1
m − 1

)
, (38)

so that

pσ(n) =
n∑

m=1

pσ(n, m) =
n∑

m=1

(2σ)m

(
n − 1
m − 1

)
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= (2σ) (2σ + 1)n−1. (39)

The problem is more interesting if σT has a well defined
value, which is equivalent to requiring the conservation of
a spin, isospin or baryon number for a system of particles.
In this case, it is not possible to compute the total number
of partitions and the abundances in closed form. However,
at least for the special case σ = 1, we can derive formulas
that allow a numerical computation of the quantities of
interest. Since the problem is completely symmetric under
a change of sign of the spin, we consider positive values of
the total spin.

We start by askinghowmanypartitions ofm terms there
are with a total spin σT. The summands of the partitions
carry spin +1 or −1. If there are k numbers with spin
+1 there must then be m − k numbers with spin −1. In
order to have a total spin σT, there is only one possibility:
(m + σT)/2 terms must carry spin +1 and (m − σT)/2
terms spin −1. Hence the required number of partitions at
fixed m is

p(n, m, σT) =
(

m

(m + σT)/2

)(
n − 1
m − 1

)
, (40)

and the total number becomes

p(n, σT) =
n∑

m=σT

p(n, m, σT)

=
n∑

m=σT

(
m

(m + σT)/2

)(
n − 1
m − 1

)
. (41)

Note that the sum over m is constrained by the parity of
the total spin: if σT is even (odd), m must be even (odd).
Hence the sums run over those values of m between σT
and n which have the same parity as σT.

To obtain the abundances, we only have to insert in (35)
the factor due to the spin degeneracy of the partitions, given
in (41), leading to

h(n, a, σT) =
n∑

m=σT

m

(
m

(m + σT)/2

)(
n − a − 1

m − 2

)
. (42)

Equations (41) and (42) can easily be evaluated usingMath-
ematica.
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